Uniform convergence rates for halfspace depth

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Probabilities for Halfspace Depth

Data depth functions are a generalization of one-dimensional order statistics and medians to real spaces of dimension greater than one; in particular, a data depth function quantifies the centrality of a point with respect to a data set or a probability distribution. One of the most commonly studied data depth functions is halfspace depth. It is of interest to computational geometers because it...

متن کامل

Generalization of Halfspace Depth

A data depth is one of the most important concepts of nonparametric multivariate analysis. Several depth functions have been introduced since 1980. The halfspace depth is probably the most popular. This depth function has many desirable properties (they are stated in the general definition of statictical depth function). We show a way of generalization of the halfspace depth finding a broader c...

متن کامل

Weighted halfspace depth

Generalised halfspace depth function is proposed. Basic properties of this depth function including the strong consistency are studied. We show, on several examples that our depth function may be considered to be more appropriate for nonsymetric distributions or for mixtures of distributions.

متن کامل

Uniform Convergence Rates for Kernel Density Estimation

Kernel density estimation (KDE) is a popular nonparametric density estimation method. We (1) derive finite-sample high-probability density estimation bounds for multivariate KDE under mild density assumptions which hold uniformly in x ∈ R and bandwidth matrices. We apply these results to (2) mode, (3) density level set, and (4) class probability estimation and attain optimal rates up to logarit...

متن کامل

A note on “Convergence rates and asymptotic normality for series estimators”: uniform convergence rates

This paper establishes improved uniform convergence rates for series estimators. Series estimators are least-squares fits of a regression function where the number of regressors depends on sample size. I will specialize my results to the cases of polynomials and regression splines. These results improve upon results obtained earlier by Newey, yet fail to attain the optimal rates of convergence....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2017

ISSN: 0167-7152

DOI: 10.1016/j.spl.2017.01.002